4 On some conformally invariant fully nonlinear equations , Part II : Liouville , Harnack and Yamabe

نویسنده

  • YanYan Li
چکیده

The Yamabe problem concerns finding a conformal metric on a given closed Riemannian manifold so that it has constant scalar curvature. This paper concerns mainly a fully nonlinear version of the Yamabe problem and the corresponding Liouville type problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Some Conformally Invariant Fully Nonlinear Equations

We will report some results concerning the Yamabe problem and the Nirenberg problem. Related topics will also be discussed. Such studies have led to new results on some conformally invariant fully nonlinear equations arising from geometry. We will also present these results which include some Liouville type theorems, Harnack type inequalities, existence and compactness of solutions to some nonl...

متن کامل

2 A fully nonlinear version of the Yamabe problem and a Harnack type inequality

We present some results in [9], a continuation of our earlier works [7] and [8]. One result is the existence and compactness of solutions to a fully nonlinear version of the Yamabe problem on locally conformally flat Riemannian manifolds, and the other is a Harnack type inequality for general conformally invariant fully nonlinear second order elliptic equations. Let (M, g) be an n−dimensional, ...

متن کامل

A general Liouville type theorem for some conformally invariant fully nonlinear equations

Various Liouville type theorems for conformally invariant equations have been obtained by Obata ([9]), Gidas, Ni and Nirenberg ([4]), Caffarelli, Gidas and Spruck ([1]), Viaclovsky ([10] and [11]), Chang, Gursky and Yang ([2] and [3]), and Li and Li ([5], [6] and [7]). See e. g. theorem 1.3 and remark 1.6 in [6] where these results (except for the one in [7]) are stated more precisely. In this ...

متن کامل

A Fully Nonlinear Version of the Yamabe Problem on Manifolds with Boundary

We propose to study a fully nonlinear version of the Yamabe problem on manifolds with boundary. The boundary condition for the conformal metric is the mean curvature. We establish some Liouville type theorems and Harnack type inequalities.

متن کامل

Harnack inequalities and Bôcher-type theorems for conformally invariant fully nonlinear degenerate elliptic equations

We give a generalization of a theorem of Bôcher for the Laplace equation to a class of conformally invariant fully nonlinear degenerate elliptic equations. We also prove a Harnack inequality for locally Lipschitz viscosity solutions and a classification of continuous radially symmetric viscosity solutions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004